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Introduction

The main effort during the first year of the above referenced NASA/MTPE

Topography and Surface Change award has been on finalizing the theory for

multiresolution analysis of topographic slope and curvature, finishing the computer

software for doing the analyses, and conducting tests with synthetic data as well as digital

elevation models (DEMs). The methodology and some applications are described in a

manuscript entitled "Multiresolution analysis of topographic slope and curvature with

application to landscape evolution" which will be submitted for publication this spring

( Weissel and Stark, in prep.). Portions of this work will be presented at the 1996 Spring

AGU Meeting in Baltimore, and at the West Pacific Geophysics Meeting (WPGM) in

Brisbane, Australia next July (see attached abstracts by Stark and Weissel and by Stark,

Hovius, and WeisseI).

Main Scientific Results

We would like to highlight three of the most important results stemming from the

research so far. While these results are described some of the details of new wavelet-based

multiresolution estimation (MRE) technique will be outlined.

1. Determination of topographic slope and curvature from noise-contaminated

DEMs for assessment of landscape slope stability

Slope stability in many environments is often assessed using local topographic slope

and/or shape (curvature) criteria. However, we face a major problem in attempting to

apply these criteria because the various DEMs we would use are contaminated by

spatially-varying noise, error and artifact. Different DEMs are affected by different

sources of error. For example, the accuracy of DEMs derived from radar interferometry is

thought to depend on local relief, with uncertainties of -t- 1-2 In being characteristic of

locally "smooth" terrain and larger uncertainties -4- 3-5 m characteristic of "rough"

terrain. In addition, heights obtained from radar interferometry are biased upward for

vcgetated landscapes. The presence of spatially-varying noise makes it difficult to obtain



the accurate,high-resolutionestimatesof topographicslopeand curvature requiredfor
slopestability assessment.Traditional Fourier-basedtechniquesarenot effectivefor
separatingtopographic "signal" from noisewhenthe noiseis spatially inhomogeneous
(i.e., non-stationary). Similarly, standardfinite differencingtechniquesserveto enhance
noisewhenusedin thesesituations (asdiscussedbelow).

Wavelet-basedanalysistechniquesseemto providea solution to the spatially
inhomogeneousnoiseproblem because:

1. Natural topographypossesseslength-scalingpropertiesdifferent from the
contaminatingnoise.

2. Scalingpropertiesof the topographydominate thoseof the noiseover somefinite,
intermediaterangeof length scales.

3. Wavelet-basedtechniquesdeterminethe local scalingproperties(asopposedto
global scalingproperties)asdiscussedlater.

It is thereforefeasibleto separatesignal from noiselocally by extrapolating the scaling
propertiesdeterminedat a coarsescale,wherethe topographicsignaldominates,to a
finer scalein order to obtain moreaccurate,high-resolutionestimatesof topographic
slopeand curvature.

To illustrate the noiseeffectsbriefly, considerthe problemof determining topographic
slopefor three 1° squaresof DMA DTED topography from northern Somalia.The
north-south componentof topographicslopewhich is shownas a grey scaleimagein Fig.
1 wasdeterminedby first differencesat the grid interval. This imagerevealsmanyof the
noiseand artifact problemsin the DTED data (Weisselet al., 1994), and it serves to

demonstrate that standard finite difference techniques for determining derivatives like

slope and curvature amplify short-wavelength noise and artifact. A simple illustration of

how multiresolution methods deal with noise problems is shown in Fig. 2, which depicts

"noisy" topography data across a sloping edge. We want to locate the edge, specify its

width, and determine its slope accurately. The fundamental problem is finding the right

width (or length-scale) operator to use - too long and too short give incorrect answers.

The best approach is to estimate slope at all positions using operators that span a wide

range of length scales, and this is the heart of wavelet methods.

A short review the basics of wavelet-based techniques is appropriate here: The wavelet

transform (WT for short) of a two-dimensional function h(x) with respect to a particular

wavelet family _0,_,b is given as the inner product (_ correlation function) between h and

lDO, a,b :
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where a E R + is length-scale (or, more correctly) dilation, b E IR2 is position, and 9 is the

polarization angle. Eqn. (1) shows that the wavelet family _be,_.b is formed by shifting,

stretching, and rotating a "parent" wavelet _b(x). Not any wiggly function can be called a

wavelet. There is an admissibility condition, which essentially says that wavelets have

zero mean. Wavelets should also be well-localized (or compact) in both the space and

wavenumber domains.

The choice of wavelet depends on what the analysis objectives are. In our case, we

want to estimate derivatives like slope and curvature from gridded topography. The best

approach is to use wavelets that are derivatives of smoothing functions like the splines or

the Gaussian. During the first year of NASA support, Weissel and Stark (in prep.) have

developed an algebra of spline- and Gaussian-derivative wavelets, and related these to

finite differences operators commonly used to estimate derivatives of discrete data

numerically. This new work along with some applications will be submitted for

publication this Spring. At the 1996 Spring AGU meeting we will present details of the

methodology and discuss applications to slope stability assessment using DEMs from

from a number of different areas around the world (see Stark and Weissel Spring AGU

abstract).

2. Determining the scaling properties of topography

One of the most important applications of wavelet-based methods is, as stated above,

the estimation of local length scaling properties. Topographic surfaces possess length

scaling properties across a wide range in wavelengths as indicated, for example, by the

power law decay in the power spectrum of topographic profiles and surfaces (see e.g.,

Weissel et al., 1994). We must remember, however, that only a restricted range of length

scales are available to us for examination in DEMs. Normally the minimum length scale

is the gridding interval. Scaling behavior at shorter length scales cannot be detected

unless a DEM with finer resolution is used.

Probably the best way to to envisage local scaling behavior is to consider a Taylor

expansion of a signal h(x) about a point x0 at "resolution" or length scale 1. We assume

that the signal possesses a "singularity" at x0 in the sense that an extra term dependent

on the local HSlder exponent is required in the Taylor series

h(x0 + l) = h(x0) + t. h(')(x0) +--. + h(")(x0) + C. lIV (2)

where (n) denotes the n-th derivative of h. As l --_ 0, we can say that a local scaling

exponent (or "singularity" of strength) a with a value n < a(Xo) < n + 1 occurs at the

point x0.

We can rewrite (2) more compactly as

h(xo + t) - p.(t) = c. ltl (3)



where P,_(1) is a polynomial of order n in I. Now, if we extend the admissibility condition

(2) to say that the analyzing wavelet must have n + 1 vanishing moments, we now have

xm¢(x)dx = 0, = 0, ..-,for (4)
oo

Under this condition the WT of h will be "blind" to the regular (polynomial) part of the

signal, and thus (1) will behave like

Iw¢(h; a, x0)l ~ a as a --, 0. (5)

Thus, the amplitude of the wavelet transform at x0 decays downscale according to the

singularity strength a(x0) which can (in principle) be determined from the slope of a

logarithmic-scale plot of WT amplitude against a.

Three different types of scaling behavior can be distinguished:

1. Signals might be singular almost everywhere with a constant singularity

strength H. This case is called simple scaling. When 0 < H < 1, all derivative

terms in the Taylor series expansion (2) are zero, and (3) becomes

Ih(x0 + l) - h(xo)l "_ Ill H • (6)

Fractional Brownian (fBm) profiles and surfaces have this kind of scaling property.

Many people still believe that topography is simple scaling, but this belief is

commonly based on techniques (spectral analysis, structure functions) that yield

only global or average scaling information. In practice, however, wavelet analysis of

single realizations of fractional Brownian profiles yield a range in scaling exponents

with an average close to the nominal value of H. We have found that this spurious

multiscaling arises because of statistical fluctuations in single realizations of fBm,

and it can be reduced (i.e., the histogram of exponents narrowed) but not

eliminated if the Hilbert transform of the WT is determined, and the scaling

analysis done on the analytic function rather than the WT amplitude as in (5).

. True multiscaling behavior occurs where the signal is singular almost

everywhere, and singularity strength or local scaling exponent varies over a range of

values (say, a,_n < c_(x) < a_a_) that are interwoven on fractal subsets of the total

(Euclidian) support of the surface or profile. Multiscaling analysis consists of

finding the range of singularity strengths present in a given signal sample, then

determining the Hausdorff (fractal) dimension D(a) of the subset of points

associated with each singularity strength a, i.e., finding

D(e_) = dim(x]c_(x) = _). (7)

A plot of D(c_) versus _ yields the required singularity spectrum, as shown below

(Fig. 3).



, Pseudo-multiscaling behavior occurs in two ways. The first is the spurious

multiscaling that arises from wavelet analysis of synthetic monofractals like iBm as

discussed above. This raises the unlikely possibility that topography is

simple-scaling but our wavelet-based methodology makes it appear multiscaling.

One reason for this is that topography is not an outcome of a stochastic process (like

iBm) which would generate a monofractal, and thus there is no reason to expect

that the variation in scaling exponents determined in the analysis reflects statistical

fluctuations. The second case of pseudo-multiscaling accepts the measured variation

in scaling exponents as real, but questions whether these are supported on fractal

sets as required for true multiscaling behavior. This seems to be the case with

topography, as our investigation of scaling properties shows (Figs. 3 and 4).

We illustrate our results on topography scaling properties using a topographic profile

made from airborne laser altimeter measurements at Walnut Gulch, AZ (Figs. 3 and 4).

The heights obtained from laser altimetry are highly accurate, especially in this semi-arid

terrain. The singularity spectrum D(a) is plotted against singularity strength (or scaling

exponent) a in Fig. 3 both for the Walnut Gulch altimetry profile and a known synthetic

multiscaling profile made from a multiplicative binomial cascade. The main feature of

the Walnut Gulch singularity spectrum is the presence of scaling exponents > 1.

This means that certain parts of the topographic profile are continuous in the first

derivative, and singular in the second derivative. This result casts doubt upon fractal

models for topography, especially fBm analogues of topography, because these have

scaling exponents 0 < c_ < 1. To reinforce this new result, Fig. 4 graphs local scaling

exponent c_ against position :co or b along a portion of the Walnut Gulch altimetry

profile. The solid curve at the bottom oscillating about o_ = 0.5 denotes scaling exponents

determined using a first-derivative Gaussian wavelet, while the broken and dotted curves

oscillating at 1 and above on the right were determined using second- and

fourth-derivative Gaussian wavelets, respectively. As expected from (4), the

first-derivative wavelet is unable to detect singularities of strength >_ 1. Notice the sharp

transition from scaling exponents 0.5 ;_ ce g 0.8 to scaling exponents >_ 1 at position 9200.

The cause for this abrupt transition in scaling behavior is not clear at present, but it is

clearly important and worthy of future study. Our favored explanation at this stage is

that different parts of the landscape which originate in different ways might display

scaling behavior over different ranges of length scale. Parts of the landscape whose scaling

behavior occurs at scales that are short compared to the gridding interval would appear

"smooth" over the range of length scales treated in the analysis.



3. Linking size - frequency scaling of landslides with the length-scaling

properties of topography

Mapping of landslide scars from airphotos of the Southern Alps of New Zealand has

revealed that this mass-wasting process is scale invariant up to a length scale of about 1

km (Hovius, Stark and Allen, submitted). The global scaling properties of the terrain

were determined from our wavelet-based MRE analysis using a DEM provided by New

Zealand workers. We found that the scaling exponent of the power law describing the

landslide size - frequency distribution/3 _ -1.16 is about equal to the exponent

describing the overall length scaling of topography a _ 1.1 minus 2. In other words the

landslide scaling exponent is approximately equal to that of the second derivative of

topography, i.e., its curvature. The scaling linkage suggests that topographic curvature is

the rate determining parameter for hillslope failure in the Southern Alps of New Zealand,

and not hillslope gradient magnitude (see Stark, Hovius, and Weissel WPGM abstract).

Other Related Results

New results stemming from the 1993 Australian AIRSAR/TOPSAR deployment and

related field observations have been prepared for publication. A manuscript by Seidl,

Weissel, and Pratson (in press) exploring the development of the erosional escarpment

along the southeastern rifted margin of Australia will be published shortly in Basin

Research. The key result of that work is that the gorge-head form of erosional escarpment

appears to have propagated inland up the drainage system of the Macleay River at an

average rate of 2 km/my since formation of the margin 80 - 100 my ago. In November

1995 one of us (JKW) attended a workshop in Sydney, Australia to discuss results of the

1993 Australian AIRSAR/TOPSAR campaign. This was the first opportunity to present

DEMs from radar interferometry and related AIRSAR polarimetry data obtained from

sites across, above, and below the erosional escarpment of the New England section of the

southeastern Australian margin. Those preliminary results are described in a meeting

proceedings report ( Weissel, in press), whose publication is expected shortly.
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Fig. 1. Noah-southtopographicgradientfor three1° squares of DMA 3 arc sec. topogra-
phy from Somalia presented as grey-scale image. Notice the spatially inhomogeneous
field of noise and artifact that is amplified by determining the gradient at the grid inter-
val of the data.
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Fig. 2. Data profile over inclined edge embedded in "noise". Schematic error bounds are
given at right. We want to locate the edge and determine its slope. The solid, long
dashed, and and short dashed lines are slopes estimated from narrow, intermediate, and
wide gradient determining operators respectively.
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